Energies Media
  • Magazine
    • Digital Magazine
    • Digital Magazine Archive
  • Features
  • Upstream
  • Midstream
  • Downstream
  • Renewable
    • Solar
    • Wind
    • Hydrogen
    • Nuclear
  • People
  • Events
  • Advertise
No Result
View All Result
Energies Media
No Result
View All Result

‘Smart Water’ May Aid Oil Recovery

by Energies Media Staff
March 2, 2020
in Exploration & Production, News, Oil and Gas News, Press Release
Rice engineers survey crude variety to see how water can maximize reservoir production
Baker Hughes

Oil Companies Cut Millions in Wrong Places as Clean Energy Reshapes Industry

Texas Consultancy Develops AI to Address Project Challenges in the U.S. Energy Sector

HOUSTON – Now there’s evidence that oil and water do mix. Sort of.

Scientists at Rice University’s Brown School of Engineering show that microscopic saltwater droplets emulsify crude oil when each has the right composition. Understanding how they combine is important to enhanced oil recovery.

Rice chemical and biological engineer Sibani Lisa Biswal and her colleagues went to great lengths to characterize the three elements most important to oil recovery: rock, water and the crude itself.

They confirmed wells are more productive when water with the right salt concentration is carefully matched to both the oil and the rock, carbonate or sandstone formation. If the low-salinity brine can create emulsion droplets in a specific crude, the brine appears to also alter the wettability of the rock. The wettability determines how easily the rock will release oil.

The team’s work appears in the open-access Nature journal Scientific Reports.

Co-lead author Jin Song said the first hints of seawater’s effect came from wells in the North Sea. “Oil companies found that when they injected seawater, which has relatively low salinity, oil recovery was surprisingly good,” he said.

Even with that understanding, he said research has been limited. “Usually in the oil and gas industry, when they’re looking into low-salinity water, they tend to focus on the effect of the brine and ignore the effect of the oil,” said Song, who earned his Ph.D. at Rice this year and is now a researcher at Shell.

“So people haven’t been able to find a good indicator or any correlation between the effectiveness of low-salinity water and experimental conditions,” he said. “Our work is the first to identify some of the properties of the oil that indicate how effective this technique can be in a specific field.

The team tested how injected brine is dispersed and how it affects oils’ interfacial tension and electrostatic interactions with rock.

“How to characterize wettability accurately is a challenge,” Biswal said. “Oftentimes, we assume that reservoir rock underground are under a mixed-wet state, with regions that are oil-wet and regions that are water-wet.

“If you can alter your oil-wet sites to water-wet sites, then there’s less of a driving force to hold the oil to the mineral surface,” she said. “In low-salinity water injection, the brine is able to displace the trapped oil. As you change from oil-wet to water-wet, the oil is released from the mineral surface.”

The researchers tested two brines, one high-salinity and one with a quarter of the salinity of seawater, on Indiana limestone cores against six crude oils from the Gulf of Mexico, Southeast Asia and the Middle East and a seventh oil with added asphaltene. They found that high-salinity brine clearly inhibited water droplets from emulsifying in crude, unlike the low-salinity samples.

To better understand the thermodynamic nature of the emulsion, Rice research scientist Wenhua Guo took cryogenic electron microscope images of about 100 mixtures of oil and water. Because oil is opaque, the samples had to be placed in very thin containers, and then frozen with liquid nitrogen to keep them stable for imaging.

“This is the first time anyone has seen these water droplets inside crude oil,” Biswal said. “They spontaneously arise inside the crude oil when you expose it to a low-salinity brine.”

The images revealed droplets varying in size from 70 to just over 700 nanometers. Biswal said chemical surfactants — aka soap — are also good at loosening oil in a reservoir, but are prohibitively expensive. “You can change the salt concentration to modify the composition of the brine and get the same effect as in including the detergent,” she said. “So it’s basically a low-cost technique trying to achieve the same goal as detergent.”

Rice graduate alumna Sara Rezaee is co-lead author of the paper. Co-authors are Rice alumna Brianna Hernandez; research scientist Maura Puerto; Francisco Vargas, the Louis Own Assistant Professor of Chemical and Biomolecular Engineering; and George Hirasaki, the A.J. Hartsook Professor Emeritus and a research professor of chemical and biomolecular engineering.

The Abu Dhabi National Oil Company and Rice’s Consortium for Processes in Porous Media supported the research.

Read the abstract at www.nature.com/articles/s41598-020-60106-2.

Author Profile
Energies Media Staff
Website
Author Articles
  • Energies Media Staff
    https://energiesmedia.com/author/oilmanwp/
    Drones
    September 8, 2025
    Revolutionizing Renewable Energy with Advanced Drone Technology
  • Energies Media Staff
    https://energiesmedia.com/author/oilmanwp/
    Global Shale Oil and Gas Landscape Set for Growth Beyond US
    August 26, 2025
    Global Shale Oil and Gas Landscape Set for Growth Beyond US
  • Energies Media Staff
    https://energiesmedia.com/author/oilmanwp/
    E-Fuels
    August 13, 2025
    2nd Annual World E-Fuels Summit
  • Energies Media Staff
    https://energiesmedia.com/author/oilmanwp/
    What Happens to Solar and Wind Systems During Natural Disasters?
    August 6, 2025
    What Happens to Solar and Wind Systems During Natural Disasters?
  • Energies Media Staff
    https://energiesmedia.com/author/oilmanwp/
    ship on body of water at night
    August 1, 2025
    Industry leaders to speak at Wood Mackenzie’s Carbon Capture, Utilization and Storage Conference 2025
  • Energies Media Staff
    https://energiesmedia.com/author/oilmanwp/
    ROGII and NRGX Technologies Ltd. Partner to Deliver Seamless LAS Data Integration for Upstream Workflows
    July 31, 2025
    ROGII and NRGX Technologies Ltd. Partner to Deliver Seamless LAS Data Integration for Upstream Workflows
Qatar
Expo

In This Issue

Energies Media Summer 2025

ENERGIES Media (Summer 2025)


ENERGIES Cartoon (Summer 2025)


Energies Media Interactive Crossword Puzzle – Summer 2025


U.S. Oil Refineries Face Critical Capacity Test Amid Rising Demand


Bringing Safety Forward in Offshore Operations


The Hidden Value in Waste Oil: A Sustainable Solution for the Future


Meeting Emergency Preparedness and Response Criteria


Dewey Follett Bartlett, Jr.: Tulsa’s Champion of Independents


Moving Energy Across Space and Time


NeverNude Coveralls: A Practical Solution for Everyday Dignity


How to Deploy Next-Gen Energy Savers Without Disrupting Operations


Maximizing Clean Energy Tax Credits Under the Inflation Reduction Act


Why Energy Companies Need a CX Revolution


Letter from the Managing Editor (Summer 2025)

E-Fuels
ADIPEC
  • Terms
  • Privacy

© 2025 by Energies Media

No Result
View All Result
  • Magazine
    • Digital Magazine
    • Digital Magazine Archive
  • Features
  • Upstream
  • Midstream
  • Downstream
  • Renewable
    • Solar
    • Wind
    • Hydrogen
    • Nuclear
  • People
  • Events
  • Advertise

© 2025 by Energies Media